

FAQs - Continuous Fiber Reinforced Additive Manufacturing Technologies

Last updated February 3, 2026

The Continuous Fiber Reinforced Additive Manufacturing Technologies project has a submission date of Friday, February 13, 2026, but the Civil Works CSO has an expiration date of December 31, 2026. Is this a discrepancy? Which date is correct?

This project is considered an Individual Program Requirement (IPR) supported by the ERDC Civil Works (CW) Commercial Solutions Opening. Posted under the authority of the CW CSO, the IPR will describe the desired end result, offer additional context for the needs that seek solutions, provide a funding profile, and stipulate a specific due date for solutions.

Please use the submission deadline date for the [Continuous Fiber Reinforced Additive Manufacturing Technologies](#) project as the close date.

The solicitation mentions "Up to \$400,000 may be awarded in FY26 to cover materials cost for Federal lab testing." Are we to interpret that this is the maximum budget per award?

The \$400,000 is the total for the effort, and may be split among multiple vendors, dependent upon the number select and the cost associated with each bid to manufacture the requested samples in Phase 2.

We have the ability to 3D print concrete with continuous steel rope or CF strands. Would this be responsive?

This effort is focused on continuous fiber polymer additive manufacturing for Civil Works. The Government is not interested in concrete at this time.

Given that Large Format Additive Manufacturing (LFAM) bead sizes often exceed the narrow section width of standard ASTM D638 coupons, what geometry does ERDC prefer for material characterization? Will ERDC accept modified ASTM D3039 rectangular coupons machined from printed plaques to ensure a Representative Volume Element (RVE) that captures multiple bead-to-bead interfaces? The solicitation mentions 'automated reinforcement placement.' Does ERDC consider hybrid structural solutions, such as post-tensioning (using integrated internal tendons), to be within the scope of this challenge? We have found that active Z-axis compression significantly improves the performance of LFAM components in structural applications; would ERDC evaluate such 'hybrid' reinforced systems? For Civil Works applications involving hydrostatic pressure, inter-layer (Z-axis) adhesion is critical. Does ERDC intend to perform through-thickness tensile testing (e.g., 'Type-Z' coupons machined vertically from printed walls), and if so, does the Government have a preferred block size for these extractions? ERDC is seeking solutions at TRL 5–7. Is there a preference for vendors who can provide in-situ validation? For instance, would a demonstration involving large-scale

components tested in a real-world low head micro-hydro environment be considered a high-value Expected Result for this RFI?

Phase 1 of this process is focused on the request for information about the technologies and what they offer. ERDC personnel will use this information to determine the appropriate characterization techniques to competitively compare all solicitations during Phase 2. Phase 2 will include the requested geometries that the Government would like printed to effectively characterize all materials. Please include any relevant information in the Phase 1 solicitation, to allow us to accurately compare the technologies (i.e. bead size, fiber to polymer ratio/ orientations, limitations, past work, etc.)

Are cementitious materials with continuous fiber of interest or only polymer-based systems?

No. This effort is focused on polymer-based AM technologies, specifically continuous fiber additive manufacturing.

What scale of printed component / soecime (minimum) is required for relevancy? Would 1-meter / 40-inch long segments be sufficient for the testing of interest?

Yes. Please provide all relevant information about the technology and capabilities during Phase 1 RFI. Technologies that meet the requirements outlined in the RFI will be down selected to participate in Phase 2.

In the past, we have seen the term “continuous fiber reinforced AM” to mean either embedding the continuous fiber into the polymer extrusion (what our technology does) or using a single-tow AFP system to wrap a printed part after the fact to reinforce it. So, can you clarify that this is in fact the type of technology you are looking for?

Phase 1 of the RFI is focused on gathering any and all information regarding continuous fiber reinforced additive manufacturing processes, including geometries, volumes, technology specifics, and any relevant information highlighting the applications of the technology. This information will be utilized to down select for Phase 2. While the Government is interested in both continuous fiber embedded in polymer extrusion and single tow AFP systems, Phase 2 will work to identify technologies that meet the additive manufacturing criteria for complex and non-planar geometries.

Can a researcher from another federal lab not associated with ERDC submit for funding consideration?

All submissions will be evaluated for technical merit and capability of the CF-AM technology regardless of association. Down selection for Phase II will be based on that technical merit.

Can procurement ready solutions be considered and money used for prototype testing?

Phase I is targeted to off the shelf commercially available solutions, with Phase II providing limited funding for fabrication of component level coupons for characterization.

As mentioned on the website, the estimated period will be for the Winter-Spring of FY26. Does it mean that the period is one year and the project will start in Winter 2026?

The U.S. Government fiscal year (FY26) began October 1st, 2025, and ends September 30th, 2026. This period of performance began this winter and will conclude at the end of the coming spring. Exact dates for submission periods were included with the RFI.